END SEMESTER EXAMINATIONS

M.Sc. Applied Mathematics I-SEMESTER

AM 101: REAL ANALYSIS [W.E.F.2016 A.B]

(Model Question Paper)

Time: 3 hrs.

Max. Marks:75

Answer ALL Questions:

Marks:5x15=75

- (a) prove that $f \in R(\alpha)$ on [a,b] if and only if for every $\varepsilon \ge 0$, there exists a partition P con [a,b] such that $0 \le U(P,f,\alpha) L(P,f,\alpha) < \varepsilon$
- (b) if f is monotonic on [a,b] and if α is continuous on [a,b], then show that $f \in R(\alpha)$ (OR)
- 2.(a)state and prove fundamental theorem of integral calculus
- (b) If \mathbf{f} maps [a,b] into R^k and if $\mathbf{f} \in R(\alpha)$ for some monotonically increasing function α on [a,b], then prove that $|\mathbf{f}| \in R(\alpha)$ and $\left| \int_a^b \mathbf{f} d\alpha \right| \le \int_a^b |\mathbf{f}| d\alpha$

3.state and prove Stone - Weitstrass theorem

(OR)

- 4.(a) prove that there exist a real continuous function on the real line which is no where differentiable.
 - (b) Suppose $\{f_n\}$ converges to f uniformly on the set E in a metric space X. let x be a limit point of E such that $\lim_{t \to x} f_n(t) = A_n$, n = 1, 2, 3, ..., then prove that $\{A_n\}$ converges and so, $\lim_{t \to x} \lim_{t \to x} f_n(t) = \lim_{t \to x} \lim_{t \to x} f_n(t)$
- 5)(a)Define absolute convergence. Show that every absolutely convergent integral is convergent.
 - (b) Test the convergence of the integral $\int_{0}^{1} x^{p} (\log \frac{1}{x})^{q} dx$. (OR)
- 5(a)State and prove Abel's Test.
- (b) Show that the integral $\int_{-\pi}^{\infty} \frac{\sin x}{x} dx$ is convergent for $\beta > 0$.
- 7)(a) State and prove Schwarz's theorem
 - (b) Show that $z = f(x^2y)$, where f is differentiable, satisfies $x(\frac{\partial z}{\partial x}) = 2y(\frac{\partial z}{\partial y})$

(OR)

8(a) State and prove Taylor's theorem.

(the work of .

- (b) Find the maxima and minima of the function $f(x, y) = x^3 + y^3 3x 12y + 20$
- 9. Answer any **Three** of the following:
 - (a) if $f_1, f_2 \in R(\alpha)$ on [a, b], then show that $f_1 + f_2 \in R(\alpha)$ and $cf \in R(\alpha)$ for every constant c and $f \in R(\alpha)$
 - (b) give an example of a sequence of functions that disproves $\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t)$
 - (c)Examine the convergence of $\int_{0}^{1} \frac{dx}{\sqrt{1-x}}$
 - (d) Show the function $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$ is continuous at the origin.
 - (e) Show that the function $f(x,y) = \begin{cases} xy \frac{x^2 y^2}{x^2 + y^2}, & \text{if } x^2 + y^2 \neq 0 \\ 0, & \text{if } x = y = 0 \end{cases}$ is differentiable at the origin.

Dr. T. HYMAVATHI

Dr. Convener Rajamahendravaram 533 296

Rajamahendravaram Rajamahendravaram Rajamahendravaram 633 296

END SEMESTER EXAMINATIONS

M.Sc. Applied Mathematics I-SEMESTER

AM 102: ORDINARY DIFFERENTIAL EQUATIONS

[W.E.F.2016 A.B]

(Model Question Paper)

Time: 3 hrs.

Max. Marks:75

Answer ALL Questions:

Marks:5x15=75

1. Let the functions b_1, \ldots, b_n in $L(x)(t)=x^{(n)}(t)+b_1(t)x^{(n-1)}(t)+\ldots+b_n(t)x(t)$ be defined and continuous on an interval I. Let $\phi_1,...,\phi_n$ be n linearly independent solutions

existing on I containing a point t₀. Prove that $w(t) = \exp \left| -\int b_1(s)ds \right| w(t_0); t_0, t \in I$

(OR)

- 2. Solve $x^{(4)} + 4x = 0$
- If $P_n(t)$ and $P_m(t)$ are Legendre polynomials, prove that $\int P_n(t)P_m(t)dt = if \quad m \neq n$ 3.

and
$$\int_{-1}^{1} P_n^2(t) dt = \frac{2}{2n+1}$$

- Prove that $\frac{d}{dt}[t^{p}J_{p}(t)] = t^{p}J_{p-1}(t)$ and $\frac{d}{dt}[t^{-p}J_{p}(t)] = -t^{-p}J_{p+1}(t)$
- 5. Let A(t) be an $n \times n$ matrix that is continuous int on a closed and bounded interval I. Prove that there exists a solution to the IVP x' = A(t)x $x(t_0) = x_0$; $(t, t_0 \in I)$ on I Also prove that this solution is unique.

- Find a fundamental matrix for the system x' = Ax where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix}$ 6.
- State and prove Picard's theorem. 7.

(OR)

- 8. State and prove Contraction Principle.
- 9. Answer any **three** of the following:
 - a) Prove that x^4 , $x^3|x|$ are linearly independent function on [-1,1] but they are linearly dependent on [-1,0] and [0,1]
 - b) Solve $6t^2x'' + tx' + x = 0$
 - c) Show that $J_{r-1}(t) J_{r+1}(t) = 2J'_r(t)$
 - d) Find a fundamental matrix for the system x'=Ax where

$$A = \begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{bmatrix} ; \alpha_1, \alpha_2 \text{ and } \alpha_3 \text{ are scalars.}$$

e) Solve the IVP x'=x, x(0)=1 by the method of successive approximations.

END SEMESTER EXAMINATIONS

M.Sc. Applied Mathematics I-SEMESTER

AM 103: PROBABILITY & STATISTICS

[W.E.F.2016 A.B]

(Model Question Paper)

Answer ALL Questions:

Time: 3 hrs.

Max. Marks:75

Marks:5x15=75

1) From a lot of 10 items containing 3 defectives, a sample of 4 items is drawn at random. Let the random variable X denote the number of defective items in the sample. Find the probability distribution of X when the sample is drawn without replacement and also find Expectation and Variance.

(OR)

2) If 't' is any positive real number, show that the function defined by $P(x) = e^{-t}(1 - e^{-t})^{x-1}$ can represent a probability function of a random variable X assuming the values 1, 2, 3... Find E(X) and Var (X) of the distribution.

3) Fit a Poisson distribution to the following data:

Number of mistakes per page : 0 1 2 3 4 Total Number of pages : 109 65 22 3 1 200

(OR)

- 4) In a distribution exactly normal, 10.03% of the items are under 25 kilogram weight and 89.97% of the items are under 70 kilogram weight. What are the mean and standard deviation of the distribution?
- 5) Calculate the correlatio coefficient for the following heights (in inches) of fathers (X) and their sons (Y):

X: 65 66 67 67 68 69 70 72 Y: 67 68 65 68 72 72 69 71

(OR)

6) Ten competitors in a musical test were ranked by the three judges A, B and C in the following order:

Ranks by A: 1 6 5 10 3 2 4 9 7 8 Ranks by B: 3 5 8 4 7 10 2 1 6 9 Ranks by C: 6 4 9 8 1 2 3 10 5 7

Using rank correlation method discuss which pair of judges has the nearest approach to common likings in music.

(thy we will.

- 7) · A survey of 800 families with four children each revealed the following distribution:
 - No. of boys
- 0
- 2
- 3

- No. of girls
- 4
- 2.
- 1

- No. of families
- 32.
- 178 290
- 236

()

64

Is this result consistent with the hypothesis that male and female births are equally probable?

(OR)

- 8) A random sample of 10 boys has the following I,Q.'s: 70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do these data support the assumption of a population mean I.Q. of 100? Find a reasonable range in which most of the mean I.Q. values of samples of 10 boys lie.
- 9) Answer any three of the following:
 - a) If a random variable has the probability density f(x) as

$$f(x) = \begin{cases} 2e^{-2x}, & \text{for } x > 0 \\ 0, & \text{for } x \le 0 \end{cases}$$
, find the probabilities that it will take on a value

- i) Between 1 and 3 ii) greater than 0.5
- b) A die is thrown 6 times, if getting an even number is a success, find the probabilities of
 - (i) At least one success
 - (ii) ≤ 3 success
 - (iii) 4 success.
- c) Write chief characteristics of the normal distribution
- d) If θ is the angle between two regression lines and S.D. of Y is twice the S.D. of X and r = 0.25, find $\tan \theta$.
- e) A random sample of 500 apples was taken from a largeconsignment and 60 were found to be bad. Obtain the 98% confidence limits for the percentage of bad apples in the consignment.

Dr. T. HYMAVATHI

Dr. T. HYMAVATHI

Dr. Convener-Page Mathematics

Applied Mathematics 296

Appl

END SEMESTER EXAMINATIONS

M.Sc. Applied Mathematics I-SEMESTER

AM 104: ALGEBRA

[W.E.F.2016 A.B] (Model Question Paper)

Time: 3 hrs.

Max. Marks:75

Answer ALL Questions:

Marks:5x15=75

- (i) The set Aut(G) of all automorphisms of a group G is a group under composition of mappings and G/Z(G)≅ In(G)
 - (ii) State and prove Cayley's theorem.

(OR)

- 2. (i) State and prove Jordan-Holder theorem.
 - (ii) Define Nilpotent group. Prove that a group of order p" (p prime) is nilpotent.
- 3. (i) State and prove Cauchy's theorem for abelian groups
 - (ii) State and prove First Sylow theorem

(OR)

- 4. State and prove Second & Third Sylow theorems
- 5. (i) State and prove Fundamental theorem of homomorphism
 - (ii) If K is an ideal in a ring R then show that each ideal in R/K is of the form A/K where A is an ideal in R containing K.

(OR)

- 6. i) In a non-zero commutative ring with unity, prove that an ideal M is maximal if and only if R/M is a field.
 - ii) If R is a commutative ring then prove that an ideal P in R is prime if and only if $ab \in P, a \in R, b \in R \Rightarrow a \in Porb \in P$.
- 7. (i) Prove that an irreducible element in a commutative principal ideal domain (PID) is always prime
 - (ii) Show that Every Euclidian domain is a PID

(The broadal,

- 8. (i)State and prove Gauss lemma
 - (ii)Let R be a commutatuive ring and P a prime ideal. Then S=R-P is a multiplicative set and R_s is a local ring with unique maximal ideal $P_s = \{a/s \mid a \in p, s \notin P\}$.
- 9. Answer any **Three** of the following:
 - a) Define Automormorphism of a group. Prove that every group of order p 2 (p prime) is abelian
 - b) Find the non isomorphic abelian groups of order 360 ·
 - c) Define Ideal and Maximal ideal. Give two examples each.
 - d) Define nilpotent ideal and give an example.
 - e) Define Euclidean domain and give an example. Define Local ring.

Dr. T. HYMAYATHI
Dr. T. HYMAYATHI

Convener-P.G. B.O. S.

Convener-P.G. B. Mathemetics

Applied Mathematics & Mathematics

END SEMESTER EXAMINATIONS

M.Sc. Applied Mathematics I-SEMESTER

AM 105: C PROGRAMMING

[W.E.F.2016 A.B]

(Model Question Paper)

Time: 3 hrs.

Max. Marks:75

Answer ALL Questions:

Marks:5x15=75

1) Explain Data types in C with examples.

(OR)

- 2) Describe different categories of operators in C with examples.
- 3) Explain conditional control structures in C.

(OR)

- 4) i) Write a program to generate Prime numbers up to N.
 - ii) Explain GO TO statement with suitable example.
- 5) i) What is recursion in functions? Write a program to find the factorial of given number using recursion.
 - ii) Write a C program to multiply two given matrices

(OR)

- 6) Discuss in detail about storage classes in C.
- 7) What is pointer? Explain the advantages of Pointer with suitable examples (OR)
- 8) Write a C program to process student data in generating results using array of structures.
- 9) Answer any **three** of the following:
 - a) Discuss in brief about structure of a C program.
 - b) What are the input output statements in C? Explain?
 - c) Write a program to print the following output

1 2 3 4 5 1 2 3 4 1 2 3

- d) Explain String handling functions.
- e) Explain given below
 - i) Call by value ii) Call by reference

Dr. T. HYMAVATHI

Dr. T. HYMAVATHI

Convener-P.G. B.O.S.

Rajamahendravaram-533 296

Rajamahendravaram-533 Rajamahendravaram-533